Андрей с днём рождения gif

/ Просмотров: 92141

рождения title="Регулятор громкости FluidDAC" src="http://myelectrons.ru/wp-content/uploads/2013/03/FluidDAC-Volume.myelectrons.com_.jpg" alt="Передняя панель FluidDAC, регулятор громкости">Усилитель мой от рождения уже обладал весьма почётным уровнем подавления пульсаций напряжения питания (PSRR - англ. - Power Supply Rejection Ratio). Блок питания я снабдил емкостями щедро, да ещё заряжаются они "мягко" (простенький трюк, но не о нём сейчас). В общем, по всем прикидкам усилитель должен был получиться абсолютно тихим. Т.е. уровень "гудежа" 100Гц по идее ниже всех слышимых пределов. И в недорогих тестовых наушниках, да днём - так и было. Но тут послушал я его глубокой ночью, да в любимых Sennheiser HD580. Гудит. Ненавязчиво, почти незаметно. Слышно, естественно, только без сигнала и на выкрученной на полную громкости. Если бы делал для себя - наверное, так бы и оставил.

Из идеологических соображений я ни в какую не хотел применять петлевые ООС в аналоговой части, даже в стабилизаторах питания. Немножко попахивает high-end'ным экстремизмом, ну да вот так мне тогда "упёрлось", а к своим прихотям надо относиться уважительно! 😉 Посему возможность применить интегральные стабилизаторы была отринута на корню. Решил добавить "виртуальную батарею", по слухам придуманную ещё в прошлом столетии инженерами фирмы Technics. А по сути же - простой истоковый (или эмиттерный) повторитель в питании, на вход которого подано отфильтрованное это же самое напряжение питания. Ещё это чудо электронной мысли иногда называют "Электронный Дроссель", "Усилитель или Умножитель Ёмкости", а так же "Устройство Защиты и Фильтрации", или "УЗФ", хотя защищать на практике надо его самого...

Кстати, в Сети гуляет немало вариантов, более (а чаще) менее грамотных. Для начала приведу базовую схему фильтра. Критиковать альтернативные варианты сейчас не буду. Если что вызвало удивление - пишите, пожалуйста, в комментариях. Может совместно создадим обучающую статью для только-только постигающих искусство схемотехники 😉

Электронный дроссель, простейший вариант

Конденсатор С2 должен быть с минимальными утечками. Ёмкость где-нибудь от 1мкФ до... сколько душа пожелает. Можно так же увеличить сопротивление резистора фильтра, мне 1МОм нравится из соображений уменьшения влияния всевозможных утечек. Стабилитрон, что защищает затвор транзистора от пробоя, должен быть на напряжение от 10 до 20 Вольт.

Для пробы впаял в одном, самом важном источнике. Использовал "логический" MOSFET (с низким пороговым напряжением Vgs), так что потеряли мы лишь пару вольт на таком стабилизаторе. Стало существенно тише. Одна беда - фильтрующий конденсатор заряжается до номинального напряжения очень медленно. Теперь вся схема "плывёт" по напряжениям несколько минут после включения. И тут пришло первое "озарение": пульсации питания, которым я "кормлю" повторитель этой самой виртуальной земли - в моем случае сотня милливольт. Два встречно включенных кремниевых диодика, шунтирующие резистор фильтра, никак не повлияют на работу фильтра в установившемся режиме, и в тоже время обеспечат на порядок более быстрый заряд и разряд конденсатора фильтра.

Фильтр, который быстро выходит на режим

Если же в каком-либо конкретном применении пульсации питающего напряжения на входе фильтра (V+) превышают пару сотен милливольт - всегда можно включить несколько диодов последовательно, или даже стабилитрон.

Фильтр "электронный дроссель" - версия MyElectrons.ru

Как нарисовал - сразу же понял, что дополнительный скромный диод решил мне ещё одну задачку: где взять полевики "L"-типа для более высоковольтных источников (терять четыре-пять вольт - типичный Vgs обычных MOSFET - даже там было жалко). Ведь теперь Vds на полевом транзисторе никогда не превысит его собственного Vgs при заданных токах нагрузки плюс падение на диоде. Значит можно использовать низковольтные полевики, которых у меня оказалось в достатке, и для высоковольтного питания.

Те же два диода (или стабилитрон) кардинально решают ещё более серьёзную проблему, особенно остро стоящую в по-настоящему высоковольтных источниках, где народ применяет эти самые "виртуальные батареи" безо всякой защиты. Там при неудачном стечении обстоятельств на повторителе может рассеиваться мгновенная мощность в сотни ватт. Любой, даже непомерно большой (для требуемых рабочих режимов) транзистор разлетается в пыль. Диоды исключают подобные ситуации, эффективно ограничивая падение напряжения на повторителе. Правда, теперь не получится использовать тот же фильтр ещё и для задержки подачи анодного напряжения - ну да это меня мало беспокоило. Во-первых аппарат был не ламповый. Во-вторых то, как народ это дело обычно использует - подачу-то анодного при включении прибора такой фильтр задерживал, а вот снятие высокого напряжения при отключении питания он ни разу не ускорял. Так что задачку о правильном соотношении во времени подачи и снятия накального и анодного напряжений мы сейчас рассматривать не будем.

На этом мысль останавливаться не пожелала. Мне-то была нужна ещё схема автоматики, которая будет эффективно защищать нагрузку (дорогие аудиофильские наушники) от всевозможных перепадов напряжения, которые неизбежны при включении и выключении аппарата. Если задержку при включении сделать может и ребёнок, то как определить момент выключения без пристального мониторинга "сырого", несглаженного огромными емкостями фильтров, напряжения питания? Да вот же он, отличный монитор! Причём реагировать будет не только на On/Off, но и на любые достаточно резкие броски питания. Вместо диодов включаем эмиттерные переходы транзисторов. Коллекторы соединяем вместе и заводим на схему автоматики, с условием, что она не заберёт большого тока.

Электронный дроссель с датчиком бросков напряжения

Итого, простой фильтр пульсаций удалось усовершенствовать:

  1. Быстрый выход на рабочий режим (заряд и разряд фильтрующего конденсатора) при сохранении потенциально очень большой постоянной времени фильтра
  2. Возможность использовать низковольтные полевые транзисторы для фильтрации любого напряжения
  3. Полная защита полевого транзистора и от пробоя затвора, и от неожиданных перегрузок
  4. Практически бесплатные детекторы резких скачков напряжения питания (в обе стороны) - в каждом стабилизированном источнике

Кстати, датчик бросков и включения-выключения питания оказался чересчур чувствительный - отлавливал броски от включения утюга в соседней комнате. Пришлось добавить пару диодов и резистор. Вот теперь автоматика стала отрабатывать идеально, быстро и без ложных тревог.

Фильтр с датчиком с загрублённой чувствительностью

Если Вам, дорогой читатель, данный фильтр нужен для высокого напряжения - необходимо лишь выбрать конденсаторы на соответствующее напряжение (с запасом!) В остальном фильтр без изменений будет отлично работать и в высоковольтной цепи. Если тема интересна - есть ещё куда совершенствоваться. Так что если будет интерес - будет ещё статья, уже с прицелом на ламповую технику, фильтр с дополнительной защитой; а так же обсудим эффективные приёмы по уменьшению эрозии катода...

Литература: Г. С. Векслер, В. И. Штильман. Транзисторные сглаживающие фильтры, издание второе. М: «Энергия», 1979г.

Disclaimer: Скан книги был найден на просторах Сети в свободном доступе. Копия предоставляется исключительно для ознакомления и личного пользования.

Кстати, наверняка даже такой пустяк можно запатентовать. Если есть кто из моих читателей грамотный в патентном деле - научите? 😉 А лучше просто поделитесь статьёй с друзьями-электронщиками. Мне будет приятно, и им, надеюсь - полезно.

. Bookmark the.


Источник: http://myelectrons.ru/fil-tr-pitaniya-e-lektronny-j-drossel/



Рекомендуем посмотреть ещё:


Закрыть ... [X]

Новогодние открытки: более 2000 открыток с новым Тост за папу на день рождения от дочки

Андрей с днём рождения gif Андрей с днём рождения gif Андрей с днём рождения gif Андрей с днём рождения gif Андрей с днём рождения gif Андрей с днём рождения gif Андрей с днём рождения gif Андрей с днём рождения gif